
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 25 – Classes

www.umbc.edu

Last Class We Covered

• “Run” time

– Run time of different algorithms

– Selection, Bubble, and Quicksort

– Linear and Binary search

• Asymptotic Analysis

– Big O, Ω, and θ

– What makes an algorithm run in “best case” time

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn about the principles of OOP

– (Object-Oriented Programming)

– Encapsulation

– Abstraction

• To learn about classes (in Python)

– How they work at a high level

– Cool stuff like inheritance and overriding

4

www.umbc.edu

Note on Today’s Topic

• We are covering classes only at a
conceptual level in CMSC 201

– You’ll learn classes in detail in CMSC 202 (C++)

• Do not worry about the exact details of how
something works or is written in code

– Python and C++ classes look very different

5

www.umbc.edu6

Procedural vs OOP

www.umbc.edu

Procedural Programming

• Procedural programming uses:

– Data structures (like integers, strings, lists)

– Functions (like printVendingMachine())

• In procedural programming, information
must be passed to the function

– Functions and data structures are not linked

7

www.umbc.edu

Object-Oriented Programming (OOP)

• Object-Oriented programming uses

– Classes!

• Classes combine the data and their
relevant functions into one entity

– The data types we use are actually classes!

– Strings have built-in functions like lower(),
join(), strip(), etc.

8

www.umbc.edu

Procedural vs OOP

9

• Procedural

– Calculate the area of a
circle given the
specified radius

– Sort this class list
given a list of students

– Calculate the
student’s GPA given a
list of courses

• Object-Oriented

– Circle, you know your
radius, what is your
area?

– Class list, sort your
students

– Transcript, what is this
student’s GPA?

www.umbc.edu10

Abstraction and Encapsulation

www.umbc.edu

Abstraction

• All programming languages provide some
form of abstraction

– Hide the details of implementation from the user

– User doesn’t need to know how an
engine works in order to drive a car

– Do you know how append() works?

• No, but you can still use it!

11 Image from wikimedia.org

www.umbc.edu

Encapsulation

• Encapsulation is a form of information
hiding and abstraction

– Data and functions that act on that data are
located in the same place (inside a class)

• Class methods are called on a class object

– They know everything about that object already

• Remember, classes contain code and data!

12

www.umbc.edu13

Classes

www.umbc.edu

What is a Class?

• According to the dictionary:

– A set, collection, group, or configuration
containing members regarded as having
certain attributes or traits in common

• According to OOP principles:

– A group of objects with similar properties,
common behavior, common relationships with
other objects, and common semantics

14

www.umbc.edu

Class Vocabulary

• A class is a special data type which defines
how to build a certain kind of object

• Instances are objects that are created which
follow the definition given inside of the class
– Every instance of a class has both

attributes and methods

15

“Method” is just another
word for function, often used
when talking about classes

www.umbc.edu

Blueprints

• Classes are “blueprints” for creating objects

– A dog class to create dog objects

– A car class to create carobjects

• The blueprint defines

– The class’s attributes (properties)

• As variables

– The class’s behaviors (functions)

• As methods
16

www.umbc.edu

Objects

• Each instance of a class is called
an object of that class type

• You can create as many instances
of a class as you want

– Just like a “regular” data type, like int or float

– There can be more than one dog or one car

• Multiple dog objects, multiple car objects

17

www.umbc.edu18

Creating a Class

www.umbc.edu

Defining a Class

• When we create a new class, we must define
its attributes and methods

– Once we’ve done that, we can create instances

• Think about it in terms of parts of speech

– Objects are nouns (“my dog”, “Arun’s car”)

– Attributes are adjectives (“big”, “brown”, “old”)

– Methods are verbs (“speak”, “reverse”, “play”)

19

www.umbc.edu

Built-In Functions

• Classes have two important built-in functions

– Have double underscores on either side of name

__init__

– Constructor for the class

– Initializes and creates attributes

__str__

– Defines how to turn an instance into a string

– Used when we call print() with an instance

20

www.umbc.edu

Familiar Objects

• Objects like integers, lists, and Booleans also
have constructors and string representations

• To create an integer, we could use
newInt = int()

• To print a list, we could use
print(myList)

– This will print it out with square brackets

21

www.umbc.edu

Constructors

• Every class must have a constructor

– How a new object is created

• A class constructor will

– Supply default values for attributes

– Initialize the object and its attributes

• Constructors are automatically called
when an object is created

22

www.umbc.edu

Class Definition Example

class animal:

def __init__(self, species, name, age):

self.species = species

self.name = name

self.age = age

def speak(self):

print("\"" + str(self.species) + \

" noise\"")

23

www.umbc.edu

Class Definition Example

class animal:

def __init__(self, species, name, age):

self.species = species

self.name = name

self.age = age

def speak(self):

print("\"" + str(self.species) + \

" noise\"")

24

constructor setting
attributes

method

class name

www.umbc.edu

Class Definition Example

class animal:

def __init__(self, species, name, age):

self.species = species

self.name = name

self.age = age

def speak(self):

print("\"" + str(self.species) + \

" noise\"")

25

Notice that everything is indented
under the “class animal:” line of code

www.umbc.edu

Class Usage Example

• To create an instance of a class (a class object),
use the class name, pass it the values for the
attributes, and assign to a variable

26

create an animal object (species: sheep)

variable1 = animal("sheep", "Dolly", 6)

create your own animal object!

variable2 = animal("dog", "Fido", 7)

www.umbc.edu

The self Variable

• The self variable is how we refer to the
current instance of the class

– In __init__, self refers to the object
that is currently being created

– In other methods, self refers to the
instance the method was called on

27

def speak(self):

print("\"" + str(self.species) + " noise\"")

www.umbc.edu28

Inheritance

www.umbc.edu

Inheritance

• Inheritance is when one class (the “child”
class) is based upon another class (the
“parent” class)

• The child class inherits most or all of its
features from the parent class it is based on

• It is a very powerful tool available to you with
Object-Oriented Programming

29

www.umbc.edu

Inheritance Example

• For example: computer science students are a
specific type of student

• They share attributes with every other student

• We can use inheritance to use those already
defined attributes and methods of students
for our computer science students

30

www.umbc.edu

Inheritance Vocabulary

• The class that is inherited from is called the

–Parent class

–Ancestor

– Superclass

• The class that does the inheriting is called a

–Child class

–Descendant

– Subclass
31

www.umbc.edu

Inheritance Code

• To create a child class, put the name of the
parent class in parentheses when you initially
define the class

class cmscStudent(student):

• Now the child class cmscStudent has
the properties and functions available
to the parent class student

32

www.umbc.edu

Extending a Class

• We may also say that the child class is
extending the functionality of the parent class

• Child class inherits all of the methods and
data attributes of the parent class

– Also has its own methods and data attributes

– We can even redefine parent methods!

33

www.umbc.edu34

Redefining and
Extending Methods

www.umbc.edu

Redefining Methods

• Redefining a method is when a child class
implements its own version of that method

• To redefine a method, include a new method
definition – with the same name as the
parent class’s method – in the child class

–Now child objects will use the new method

35

www.umbc.edu

Redefining Example

• Here, we have an animal class as the parent
and a dog class as the child

class animal:

rest of class definition

def speak(self):

print("\"" + self.species + " noise\"")

class dog(animal):

def speak(self):

print("Woof woof bark!")

36

www.umbc.edu

Extending Methods

• Instead of completely overwriting a method,
we can also extend it for the child class

• Want to execute both the original method
in the parent class and some new code
in the child class

– To do this, we must explicitly call the
parent’s version in the child

37

www.umbc.edu

Extending Example

• Extending the __str__ method for dog

– Used when we print() an object

38

def __str__(self):

get the result from parent __str__

msg = animal.__str__(self)

add information about the breed

msg += "\n\tTheir breed is " + str(self.breed)

return msg

www.umbc.edu39

Live Code Demo

www.umbc.edu

Why Use Classes?

• Classes can simplify and streamline your code

• Imagine if Project 2 had a “snack” class

– Attributes: name, price, quantity, code

– Methods: buyOne(), writeToFile(), __init__, etc.

• Would have let us use 2D lists instead of 3D

• Side Note: do not use classes for Project 3

– The data is simple enough that it’s not needed
40

www.umbc.edu

Announcements

• Final is when?

– Start studying now!

– Review worksheet won’t come out until Saturday

• Project 3 out now

– Project due on Friday, May 12th @ 8:59:59 PM

41

Friday, May 19th from 6 to 8 PM

