CMSC201
Computer Science | for Majors

Lecture 25 — Classes

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted www.umbc.edu

Last Class We Covered

 “Run” time
— Run time of different algorithms
— Selection, Bubble, and Quicksort
— Linear and Binary search

* Asymptotic Analysis
— Big O, 2, and O
— What makes an algorithm run in “best case” time

2 www.umbc.edu

Any Questions from Last Time?

3 www.umbc.edu

Today’s Objectives

* To learn about the principles of OOP
— (Object-Oriented Programming)
— Encapsulation
— Abstraction

* To learn about classes (in Python)
— How they work at a high level
— Cool stuff like inheritance and overriding

www.umbc.edu

Note on Today’s Topic

 We are covering classes only at a
conceptual level in CMSC 201

— You’ll learn classes in detail in CMSC 202 (C++)

* Do not worry about the exact details of how
something works or is written in code

— Python and C++ classes look very different

5 www.umbc.edu

Procedural vs OOP

6 www.umbc.edu

Procedural Programming

* Procedural programming uses:

— Data structures (like integers, strings, lists)
— Functions (like printVendingMachine ())

* |n procedural programming, information
must be passed to the function

— Functions and data structures are not linked

7 www.umbc.edu

Object-Oriented Programming (OOP)

* Object-Oriented programming uses

— Classes!

* Classes combine the data and their
relevant functions into one entity
— The data types we use are actually classes!

— Strings have built-in functions like lower (),
join (), strip(), etc.

8 www.umbc.edu

Procedural vs OOP

* Procedural

— Calculate the area of a
circle given the
specified radius

— Sort this class list
given a list of students

— Calculate the
student’s GPA given a
list of courses

* Object-Oriented

— Circle, you know your
radius, what is your
area?

— Class list, sort your
students

— Transcript, what is this
student’s GPA?

www.umbc.edu

Abstraction and Encapsulation

10 www.umbc.edu

Abstraction

e All programming languages provide some
form of abstraction

— Hide the details of implementation from the user

— User doesn’t need to know how an
engine works in order to drive a car

— Do you know how append() works?

* No, but you can still use it!

11 Image from wikimedia.org www.umbc.edu

Encapsulation

* Encapsulation is a form of information
hiding and abstraction

— Data and functions that act on that data are
located in the same place (inside a class)

* Class methods are called on a class object
— They know everything about that object already

e Remember, classes contain code and data!

12 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Classes

13 www.umbc.edu

What is a Class?

* According to the dictionary:

— A set, collection, group, or configuration
containing members regarded as having
certain attributes or traits in common

* According to OOP principles:

— A group of objects with similar properties,
common behavior, common relationships with
other objects, and common semantics

14 www.umbc.edu

Class Vocabulary

* Aclass is a special data type which defines
how to build a certain kind of object

* Instances are objects that are created which
follow the definition given inside of the class

— Every instance of a class has both
attributes and methods

“Method” is just another
word for function, often used
when talking about classes

15 www.umbc.edu

Blueprints

* Classes are “blueprints” for creating objects
— A dog class to create dog objects
— A car class to create carobjects

* The blueprint defines
— The class’s attributes (properties)
* As variables
— The class’s behaviors (functions)
* As methods

16 www.umbc.edu

Objects

e Each instance of a class is called
an object of that class type

* YOou can create as many Instances

of a class as you want
— Just like a “regular” data type, like int or £loat

— There can be more than one dog or one car
* Multiple dog objects, multiple car objects

17 www.umbc.edu

Creating a Class

18 www.umbc.edu

Defining a Class

* When we create a new class, we must define
its attributes and methods

— Once we’ve done that, we can create instances

* Think about it in terms of parts of speech

”

— Objects are nouns (“my dog”, “Arun’s car”)
— Attributes are adjectives (“big”, “brown”, “old”)

”

— Methods are verbs (“speak”, “reverse”, “play”)

19 www.umbc.edu

Built-In Functions

* Classes have two important built-in functions

— Have double underscores on either side of name

init

— Constructor for the class
— Initializes and creates attributes

str

— Defines how to turn an instance into a string
— Used when we call print () with aninstance

20 www.umbc.edu

21

Familiar Objects

e Objects like integers, lists, and Booleans also
have constructors and string representations

* To create an integer, we could use

newInt = int ()

* To print a list, we could use
print (myList)
— This will print it out with square brackets

www.umbc.edu

22

Constructors

* Every class must have a constructor

— How a new object is created

* A class constructor will
— Supply default values for attributes
— Initialize the object and its attributes

e Constructors are automatically called
when an object is created

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Class Definition Example

class animal:

def init (self, species, name, age):

self.species = species
self .name = name
self.age = age

def speak (self):

print ("\"" + str(self.species) + \
1] nOise\ " n)

23 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Class Definition Example

Q_ class name

class animal:
def init (self,

species, name, age):

species
name

age

setting
attributes

print ("\"" + str(self.species) + \

self.species =
constructor
self .name =
self.age =
def speak (self):
method
24

] nOise\ " n)

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Class Definition Example

class animal:

def init (self, species, name, age):

self.species = species
self .name = name
self.age = age

def speak (self):

print ("\"" + str(self.species) + \
1] nOise\ " n)

Notice that everything is indented
under the “class animal:” line of code

25

www.umbc.edu

Class Usage Example

* To create an instance of a class (a class object),
use the class name, pass it the values for the
attributes, and assign to a variable

create an animal object (species: sheep)
variablel = animal ("sheep'", "Dolly", 6)

create your own animal object!
variable2 = animal ("dog", "Fido", 7)

26 www.umbc.edu

The self Variable

e The self variable is how we refer to the
current instance of the class
—In init , self refersto the object

that is currently being created

— In other methods, self refers to the
instance the method was called on

def speak (self):

print("\"" + st pecies) 4+ " noise\"")

27 www.umbc.edu

Inheritance

28 www.umbc.edu

Inheritance

* Inheritance is when one class (the “child”
class) is based upon another class (the
“parent” class)

* The child class inherits most or all of its
features from the parent class it is based on

* |tis a very powerful tool available to you with
Object-Oriented Programming

29 www.umbc.edu

30

Inheritance Example

* For example: computer science students are a
specific type of student

* They share attributes with every other student

* We can use inheritance to use those already
defined attributes and methods of students
for our computer science students

www.umbc.edu

Inheritance Vocabulary

* The class that is inherited from is called the
— Parent class
— Ancestor
—Superclass

* The class that does the inheriting is called a
— Child class
—Descendant
—Subclass

31 www.umbc.edu

Inheritance Code

* To create a child class, put the name of the
parent class in parentheses when you initially
define the class

class cmscStudent (student) :

e Now the child class ecmscStudent has

the properties and functions available
to the parent class student

32 www.umbc.edu

Extending a Class

 We may also say that the child class is
extending the functionality of the parent class

e Child class inherits all of the methods and
data attributes of the parent class

— Also has its own methods and data attributes
— We can even redefine parent methods!

33 www.umbc.edu

Redefining and
Extending Methods

34 www.umbc.edu

Redefining Methods

* Redefining a method is when a child class
implements its own version of that method

* To redefine a method, include a new method
definition — with the same name as the
parent class’s method — in the child class

—Now child objects will use the new method

35 www.umbc.edu

Redefining Example

 Here, we have an animal class as the parent
and a dog class as the child

class animal:
rest of class definition
def speak (self):

print ("\"" + self.species + " noise\"")

class dog(animal) :
def speak (self):
print ("Woof woof bark!")

36 www.umbc.edu

37

Extending Methods

* |nstead of completely overwriting a method,
we can also extend it for the child class

 Want to execute both the original method
in the parent class and some new code
in the child class

—To do this, we must explicitly call the
parent’s version in the child

www.umbc.edu

38

Extending Example

* Extending the str method for dog

— Used when we print () an object

def str (self):

get the result from parent str
msg = animal. str (self)

add information about the breed

msg += "\n\tTheir breed is " + str(self.breed)
return msg

www.umbc.edu

Live Code Demo

39 www.umbc.edu

40

Why Use Classes?

Classes can simplify and streamline your code

Imagine if Project 2 had a “snack” class

— Attributes: name, price, quantity, code
— Methods: buyOne(), writeToFile(), __init__, etc.

Would have let us use 2D lists instead of 3D

Side Note: do not use classes for Project 3

— The data is simple enough that it’s not needed

www.umbc.edu

Announcements

* Final is Friday, May 19th from 6 to 8 PM

— Start studying now!
— Review worksheet won’t come out until Saturday

* Project 3 out now
— Project due on Friday, May 12th @ 8:59:59 PM

41 www.umbc.edu

